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ABSTRACT: In this article we report initial experiments applying nonequilibrium atmospheric 
pressure, pulsed, floating electrode dielectric barrier discharge in ophthalmology. We show that 
plasma can be applied to the eye both ex vivo in explanted pig eyes and in vivo in live rabbits 
and pigs. The results show effective sterilization below the threshold of significant damage to the 
cornea. This research is in the initial stages but is instrumental in the understanding of plasma’s 
ability to become a novel therapeutic tool in ophthalmology.

KEY WORDS: eye sterilization, plasma sterilization, ophthalmology

I. INTRODUCTION

Celebrating over a decade of research, the field of Plasma Medicine continues to grow 
rapidly.1–7 There are a increasing number of medical applications, including, for exam-
ple, the development of antimicrobial coatings using both high- and low-pressure plas-
ma discharges8–12; plasma treatment and preparation of medical textiles and fibers13–15; 
plasma-assisted stimulation of plant cell growth, seed germination, and other agricul-
ture-related applications4,16–22; direct plasma decontamination of foodstuffs23–26; and the 
many medically relevant therapeutic treatment ideas such as plasma treatment of can-
cers,1,27–42 treatment of inflammatory bowel disease,43 skin treatment (primarily for ster-
ilization),44–46 and blood coagulation,47–51 as well as many others. There even have been 
initial attempts at explaining the complex biochemical and biological mechanisms of 
nonequilibrium discharge interaction with living systems.49,52–63 The focus of this work 
is the interaction of nonequilibrium atmospheric pressure dielectric barrier discharge 
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(DBD) with the surface and cells of the eye. There are important challenges in ophthal-
mology that plasmas may be able to address. The key challenges we are investigating 
are capillary coagulation during eye surgery,64 sterilization of corneal tissue, which is 
an important challenge in many eye surgeries and drug injections, and treating uveal 
melanomas using plasmas.65–69

The conjunctiva, the thin, moist, transparent membrane covering the surface of the 
eye, serves as the primary protection of the ocular surface; it contains many capillary 
blood vessels that, under normal conditions, are barely visible. The conjunctival blood 
vessels are somewhat fragile and can easily break, especially during surgical intervention 
with a scalpel or a needle used for drug injection.70–73 Subconjunctival hemorrhage can 
easily be prevented with plasma-assisted capillary coagulation.43,47,48,50,51,74 Of course, the 
conjunctiva serves as a barrier against pathogenic organisms entering the eye.75–77 Once 
the barrier is broken, plasma treatment may be used to inactivate pathogenic organisms 
on the surface of the eye to prevent infection. In this article we present effective steril-
ization of the eye both ex vivo with explanted pig eyes and in vivo in rabbits and pigs. 
We observe some level of damage at higher plasma doses, but there is clearly a dose 
where no visible damage to the eye is observed while effective and fast sterilization 
is achieved. Finally, we discuss some of the initials steps taken toward treatment of 
deep-tissue ailments of the eye, with an example of uveal melanoma treatment.

II. MATERIALS AND METHODS

A. Floating Electrode DBD

The floating electrode DBD (FE-DBD) plasma was constructed as we have described 

FIG. 1: Schematic of the plasma treatment probe on the surface of the eye: A) surface of the eye; 
B) plasma between the electrode and the eye; C) hard contact lens to mimic curvature of the eye; 
D) plastic electrode housing; E) high voltage metal electrode; and F) silver paste to provide good 
contact between the curved contact lens C) and the metal electrode E)
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previously.51,78,79 Simply, plasma is generated by the application of short pulses of ~2-
μsec duration and ~30-kV amplitude to a quartz-covered metal electrode (Fig. 1). This 
way, plasma is generated between the surface being treated and the electrode. It is im-
portant to note that the living tissue, in this case tissue of the eye in a live animal, is used 
as a second active electrode and participates in the plasma generation. All the active 
species generated in plasma, such as hydrogen peroxide (H2O2), OH, and O3, charges, 
and light comes in direct contact with the tissue being treated. Many groups previously 
showed that this is an effective antimicrobial treatment.3,27,80–95

To visualize the FE-DBD plasma treatment, we used an electrode we designed for 
ocular treatment and, as a second electrode, borosilicate glass coated with indium tin 
oxide (ITO) (Fisher Scientific). Figure 2 shows the setup with ITO-coated glass on the 
left and the eye treatment electrode on the right. In this case the voltage is turned off and 

FIG. 2: Photograph of the plasma probe ~2mm away from the treatment surface (ITO-coated 
glass) with plasma turned off

FIG. 3:  Photograph of the plasma probe ~2mm away from the treatment surface (ITO-coated 
glass) with plasma turned on: very faint filaments are visible as compared to Figure 2
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no plasma is visible. When the discharge is turned on while keeping the room lights on, 
the discharge is barely visible, as can be seen in Fig. 3.

The reader is urged to note the apparent uniformity of the discharge; of course, this 
pulsed plasma is nonuniform on the microscopic time and surface scales but to the eye 
appears quite uniform. In fact, in the dark the discharge can been seen through ITO-coat-
ed glass (see Fig. 4) and a fairly uniform treatment over the 1-second exposure time (the 
shutter is kept open for 1 second to accumulate sufficient light) can be observed. Since 
most treatments are on multisecond time scales, we can assume that most of the surface 
receives a uniform dose of plasma; however, this still remains an open question that 
needs to be answered in further studies.

B. Plasma Treatment of Agarose Gel

Agarose gels were prepared using agar powder (Fisher Scientific) and distilled water 
according to standard procedures. The agar powder and water solution was boiled on a 
hot plate until clear. While the solution was boiling, the stock solutions from the H2O2/
horseradish peroxidase (HRP) assay kit were prepared according to the protocol provid-
ed by Life Technologies. 

1. Amplex Red Reagent Stock Solution (10 mM) 

Allow one vial of Amplex Red reagent (component A, blue cap) and dimethyl sulfoxide 
(component B, green cap) to warm to room temperature. Just before use, dissolve the 
contents of the vial of Amplex Red reagent in 60 μL of dimethyl sulfoxide. Each vial 
of Amplex Red reagent is sufficient for approximately 100 assays, with a final reaction 
volume of 100 μL/assay. Use the Amplex Red reagent stock solution on the same day it 

FIG. 4: Photograph of the plasma probe ~2mm away from the treatment surface (ITO-coated 
glass) with plasma turned on.  The photo is made through the ITO glass.  At the exposure time of 
1 second one can clearly see uniform coverage of the treated surface
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is prepared.

2. 1X Reaction Buffer 

Add 4 mL of 5X Reaction Buffer (component C, white cap) to 16 mL of deionized water. 
This 20-mL volume of 1X reaction buffer working solution is sufficient for approxi-
mately 100 assays (100 μL each) with 10 mL excess for making stock solutions.

3. HRP Stock Solution (10 U/mL) 

Dissolve the contents of the vial of HRP (component D, yellow cap) in 1.0 mL of 1X 
reaction buffer. After the assay, divide any unused HRP stock solution into single-use 
aliquots and store frozen at –20°C.

4. H2O2 Working Solution (20 mM) 

Dilute the ~3% H2O2 (component E, red cap) into the appropriate volume of 1X reaction 
buffer. The actual concentration of H2O2 is indicated on the label. For instance, you can 
prepare a 20-mM H2O2 working solution from a 3.0% (0.88 M) H2O2 stock solution by 
diluting 22.7 μL of 3.0% H2O2 into 977 μL of 1X reaction buffer. Note that although the 
~3% H2O2 stock solution has been stabilized to slow its degradation, the 20-mM H2O2 
working solution prepared in this step is less stable and should be used within a few 
hours of preparation.

After the agar solution became clear, the contents were cooled to 60°C. The stock 
solutions from the Amplex Red H2O2/HRP kit were combined and added to the cooling 
agar solution and mixed thoroughly. Five milliliters of the solution was added to culture 
plates and cooled until solidified. Once the plates were cooled to room temperature, they 
were treated with FE-DBD plasma for 5, 10, and 15 seconds. Areas of plasma discharge 
were seen as pink spots. The diameters of these spots were marked and measured.

C. Plasma Treatment of the Eye

Figure 5 shows a schematic of the animal treatment protocol for live eye steriliza-
tion. For our treatments we administer a 100-µL drop of bacteria in phosphate-
buffered saline onto the cornea (Figs. 5 and 6), attempting to keep the drop in the center 
while holding the animal. The plasma treatment is applied exactly as described above 
for a predetermined amount of time. After the treatment, we collect bacteria on a sterile 
cotton swab and then roll this swab over the surface of blood agar (Cardinal Health). 
Bacteria then are incubated at 37°C for 24 hours, after which the colony-forming units 
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FIG. 5: Schematic of the animal treatment protocol setup, clearly identifying the treatment targets 
and survival times of the animals

FIG. 6:  Schematic of the eye , identifying all the areas of interest for the plasma treatment.  Spe-
cifically in this work we treat cornea.(Adapted from https://pt.wikipedia.org/wiki/Ficheiro:Schemat-
ic_diagram_of_the_human_eye_pt.svg.)
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are counted.

III. RESULTS AND DISCUSSION

A. Analysis of Plasma Treatment of Agarose Gel

We prepared agarose gel as described above and treated it with plasma the same way we 
later treated the eyes and as described above. Figure 7 shows a photograph of the aga-
rose gel following 3 seconds of plasma treatment. The pinkish color of the dye clearly 
shows the area that received the treatment.

Figure 8 shows rather expected results: We observed an increase in the diameter 
of active species in the gel with increasing plasma treatment dose. Similar results were 
reported previously (by Dirks et al.,25 for example) and we now frequently use this 
technique to validate the presence of reactive species in the treatment area. The size of 
the electrode (Fig. 2) is just less than 3 mm (copper part); however, the plasma extends 
beyond that, as can be seen from Figs. 3 and 4. Thus the spread of reactive species in 
agarose to >5 mm after just a few seconds of treatment is not unreasonable. While this is 
not the subject of this article, we plan to investigate in the future mechanisms of reactive 
species penetration through gels and tissues, focusing especially on the type of species.

B. Plasma Sterilization of Explanted Pig Cornea

Figure 9 shows a schematic of the treatment setup we used for all ex vivo and in vivo 

FIG. 7: Plasma treated agar plate with HRP showing diameter of plasma specie penetration.
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FIG. 8:  Results of plasma discharge diameter test for treatment times of 3s, 5s, and 7s

FIG. 9:  Schematic of the plasma treatment of eye (same basic setup was used for both explanted 
eyes and live animals): A) explanted eye in a grounded petri dish (B) or the animal eye; C) high 
voltage pulsed power supply; D) eye treatment electrode as shown in Figure 1; E) Z-microposi-
tioner (used with explanted eyes); and F) plasma generated between the powered electrode and 
the surface of the cornea

experiments reported here. Basically, the typical quartz-coveted copper electrode is 
connected to a microsecond-pulsed, high-voltage power supply through an ~1-m-long 
cable. The electrode itself is held by hand approximately 2 mm away from the surface. 
This is clearly not a precise technique and is heavily reliant on the operator, like many 
similar surgical techniques. We do plan to address this with a redesign of the probe, 
similar to the schematic presented in Fig. 5. The surgeon applying the treatment did not 
report having trouble maintaining a reasonably similar treatment distance of ~2 mm for 
all treatments.

Figure 10 visually explains the treatment protocol we used for the explanted pig 
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FIG. 10:  Photographs of the treatment of the explanted pig eyes

FIG. 11:  Photograph of the explanted pig eyes after 30, 45, and 60 seconds of treatment showing 
no visible damage and no visible different between the treated samples

Scrape
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eyes, purchased from a local butcher. First, we clean the eyes as best as we can in an 
attempt to minimize damage to the cornea. Then we soak the eyes in 70% isopropanol 
for 2 minutes to remove any existing bacteria. We follow this with rinsing and air-dry-
ing for 15 minutes under a fume hood, then we deposit a 100-µL drop of bacteria 
and, finally, perform plasma treatment followed by immediate swab and culture on 
blood agar.

Figure 11 shows a set of photographs of the explanted pig eyes after plasma treat-
ment. The photos are taken usually within a minute following treatment, not exceeding 3 
minutes for any of them. As can be seen, there is no visible effect on the cornea that can 
be observed by a camera. There is, however, slight drying that can be observed and that 
we noticed later in the rabbit and pig eyes. In the future we plan to perform histopatho-
logical analysis of the treated samples.

As can be seen in Fig. 12, we are able to achieve highly effective bacterial inacti-
vation on the surface of the explanted eye. While this comes as no surprise—similar 
inactivation rates have previously been reported51,96,97—the reader will notice that these 
inactivation rates are significantly higher than what we report below for the in vivo 
treatments. We do not understand the mechanisms of such a notable difference in effect 
and plan to investigate this further in the future. Notably, a similar issue was observed 
in plasma-assisted sterilization of wounds in live animals; the bacterial reduction rated 
on in vivo wounds and other biological surfaces was much less than that on the model 
agarose gel surface.25,45,51,57,96,98

C. Plasma Sterilization of Live Rabbit Cornea

Similar to the schematic in Fig. 9, Fig. 13 shows a typical procedure in which the animal 
is held steady by the veterinarian and the plasma is applied by the surgeon.

Figure 14 shows results of plasma treatment of live rabbit cornea and inactivation 
of Staphylococcus aureus on the surface. From the initial concentration of ~106 colo-

FIG. 12:  Results of cornea sterilization of explanted pig eyes
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FIG. 13:  Photograph of rabbit undergoing plasma treatment.  On this photograph the animal was 
euthanized prior to the treatment

FIG. 14:  Results of cornea sterilization of live rabbit

ny-forming units/mL, we quickly reduced the bacterial load by ~2 logs; further reduc-
tion requires a slightly higher dose.

D. Plasma Sterilization of Live Pig Cornea

Figure 15 shows the procedure for treatment of live pig cornea and Fig. 16 is a zoomed-
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in view of the procedure. While one of the surgeons keeps the animal’s eye open with 
tweezers, the second surgeon applies the plasma. Clearly, the treatment methodology 
needs to be optimized in the future: a few plasma filaments can be seen (Fig. 16) to jump 
to the metal tweezers. The surgeons, however, reported being quite comfortable using 
the probe and keeping the appropriate distance from the eye as they were instructed.

Figure 17 shows the eye once it was swabbed for bacterial counts and removed for 
analysis. As is quite apparent from Fig. 18, which is a zoomed-in view of  Fig. 17, there 
is significant drying of the cornea following the 30-second plasma treatment.

Figure 19 shows a different animal (pig 3) being treated with plasma by a single sur-
geon. The operator is able to hold the eye open and perform the treatment comfortably.

FIG. 15:  Photograph of live pig (P1R, or Pig #1, right eye) undergoing treatment

FIG. 16:  Zoomed-in view of Figure 15, photograph of live pig (P1R, or Pig #1, right eye) under-
going treatment
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FIG. 17: Photograph of P1R eye removed for analysis. Shows the eye once it was swabbed for 
bacterial counts and removed for analysis.  As is quite apparent from Figure 18, a zoomed-in view 
of Figure 18, there is significant drying of the cornea following the 30 sec plasma treatment

FIG. 18:  Zoomed-in view of Figure 17

Similar to Fig. 17, in Figs. 21 and 22 we observe drying of the corneal surface fol-
lowing the 30-second plasma treatment. We did observe significantly less drying with 
the 15-second treatment (not shown), which leads us to believe that the effect is dose-de-
pendent and can thus be optimized. We did this previously with treatment of mouse skin; 
we were able to achieve as much as 45 minutes of treatment without tissue damage.51

While the 15-second treatment led to less tissue drying, we did not observe sig-
nificant sterilization (Fig. 23). We were able to achieve reduction of ~2 logs with the 
30-second treatment regime. Based on our experience with treatment of live surfaces, 
we may attribute such low inactivation (compared with the results on agarose gel51 or on 
explanted eyes reported above) to the treatment and collection procedure. As we noted, 
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FIG. 19: Photograph of live pig (P3L, or Pig #3, left eye) undergoing treatment

FIG. 20:  Zoomed-in view of Figure 19

FIG. 21: Photograph of P3L eye removed for analysis
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we apply a 100-µL drop to the surface of the cornea, which is already wet because the 
animal is alive. The drop quickly spreads over the eye. While we treat a ~5-mm circle 
with plasma (see agarose gel data above), the surface over which bacteria is spread and 
is collected from is much larger. We plan to modify the treatment, collection, and anal-
ysis protocol in the future to address this complication.

IV. CONCLUSION

In this article we show that treatment of a live animal cornea is possible with FE-DBD 
plasma without excessive damage to the cornea. Moreover, we show that this treatment 

FIG. 22: Zoomed-in view of Figure 21

FIG. 23:  Results of cornea sterilization of live pig
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leads to effective reduction of pathogenic bacteria on the surface of the cornea. Bacteria 
here are used as a model for the treatment of live animal eyes. The key challenge is treat-
ing eye diseases, and this article presents our first step in this direction. Clearly, many 
unanswered questions must be resolved before plasma treatment of the eye becomes a 
medical product. As can be clearly observed (in Fig. 18, for example), there is apparent 
damage to the animal eye from higher doses of plasma. While this damage is not signif-
icant enough to break the delicate surface of the cornea, the animal is likely to suffer at 
least some level of discomfort. There is also an observed drying of the corneal surface 
(which can be addressed by adding saline, for example). 
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